Matematika

Pertanyaan

Nilai (x + y) yang merupakan solusi dari sistem persamaan eksponensial :
[tex]4^{x+1} + 2^{y} = 20

2^{x-1} - 2^{y} = -3 [/tex]

adalah ............................. ( Pakai rumus yang mudah dipahami yah )

2 Jawaban

  • 2^x = a
    2^y = b

    4^(x + 1) + 2^y = 20
    2^(2x + 2) + 2^y = 20
    4a² + b = 20 ... (1)

    2^(x - 1) - 2^y = -3
    1/2 a - b = -3
    b = 1/2 a + 3 ... (2)

    Substitusi kan pers (2) ke pers (1)
    4a² + 1/2 a + 3 = 20
    8a² + a - 34 = 0
    (8a + 17)(a - 2) = 0
    a = -17/8 tdk memenuhi
    a = 2
    2^x = 2 --> x = 1

    a = 2
    b = 1/2 a + 3 = 4
    b = 2^y
    2^y = 4
    y = 2

    x + y = 1 + 2 = 3
  • Persamaan eksponen

    4^(x+1) + 2^y = 20
    2^(x-1)  - 2^y = - 3
    jumlahkan

    4^(x+1) + 2^(x-1) =  17
    4^x . 4 + 2^x . 1/2 = 17
    4 (2^x)^2 + 1/2 (2^x) = 17 ...kalikan 2
    8 (2^x)^2 + (2^x) - 34 =0
    2^x = a --> a> 0
    8a^2 + a - 34 = 0
    (a  -  2)(8a + 17) = 0
    a= 2
    2^x = 2 = 2^1
    x = 1

    2^(x-1) - 2^y = - 3
    2^(1-1) - 2^y = - 3
    2^0 - 2^y = - 3
    1 - 2^y = - 3
    2^y = 4 --> 2^y = 2^2
    y = 2

    x + y = 1 + 2= 3

Pertanyaan Lainnya